为什么LayerNorm+AdamW成了深度网络的标准配置?从尺度不变性到梯度动力学

深度网络依赖LayerNorm(RMSNorm),这创造了局部的尺度不变性(Scale Invariance),它带了独特的梯度动力学(Gradient Dynamics)。在这个独特的动力学场域中,我们关于机器学习的直觉被颠覆了,Norm的物理含义从特征强度表示变成了学习进度的旋钮,Norm理论上稳步增加,SGD自带学习率衰减,但是刹车踩的太狠导致了学习的早停,而Weight Decay从正则化项进化为有效学习率的动态调节阀。AdamW如何成为标配:Adam做到了梯度的步长恒定,有效学习率的平缓刹车;Warmup来处理训练早期的权重过小(梯度爆炸)和二阶矩估计不准的问题;AdamW修正了L2正则的问题,引入Weight Decay,把“方向更新”和“进度控制”拆成两个干净的旋钮。

从RL比SFT更不容易遗忘到反观推荐系统缺陷

最近陆续有了一些研究LLM中RL相比SFT更不容易造成灾难性遗忘的工作,清晰地支出是RL的On-Policy特性带来了参数的稳定,而SFT将模型参数推向与预训练分布差异很大的方向,导致了遗忘问题(如图,遗忘问题的衡量就是随着新任务的学习,旧任务的平均表现下降)。 这一清晰地结论,点亮了我对很多事情的理解,推荐系统原来孤立的问题也有可能连成一片,有了更深层次的支撑。 本文包括: • LLM领域,RL比SFT更不容易造成灾难性遗忘的工作解读 • 推荐系统是标准的off-policy 监督学习,(猜想)许多缺陷也应当由此而生